
Smart Pass Manager:

A Noise-Aware Transpiler Pass for Qiskit

Ruben E. Leuzinger

June 15, 2025

Abstract

Smart Pass Manager (smart_transpile) is a noise-aware transpiler extension for Qiskit
that selects a connected subset of physical qubits on an IBM Quantum device by minimising a
composite cost function of two-qubit, single-qubit, read-out and time-to-decoherence penalties. A
few exploratory single-circuit tests already indicate a modest fidelity gain for circuits with more
than eight qubits and non-trivial depth, but a full benchmark campaign is still pending. Source
code and notebooks are available at github.com/RubenLeuz/smart_pass_manager.

1 Introduction

Noisy Intermediate-Scale Quantum (NISQ) devices [1] exhibit heterogeneous error rates across qubits
and couplers. Standard Qiskit mapping workflows optimise depth and SWAP count but ignore these
variations. Smart Pass Manager leverages live calibration data during transpilation to reduce aggregate
infidelity, following ideas in noise-adaptive mapping [2].

2 Design and Implementation

2.1 Calibration Data

From backend.properties() we obtain for every physical qubit or qubit pair:

• two-qubit gate error ϵ2(i→j) and gate duration t2(i→j),

• single-qubit gate error ϵ1(q),

• read-out error r(q),

• relaxation time T1(q).

Mean values such as ϵ2 and T 1 are cached for automatic hyper-parameter scaling.

2.2 Composite Edge Weight

A directed coupling graph G(V, E) is formed and each edge (i→j) receives the cost

w(i→j) = ϵ2(i→j) + α [ϵ1(i) + ϵ1(j)] + β [r(i) + r(j)] + δ
t2(i→j)

T 1

+ γ + Penaltyrev(j → i), (1)

where α, β, γ, δ are (optionally auto-scaled) hyper-parameters and Penaltyrev discourages non-native
gate directions.

1

https://github.com/RubenLeuz/smart_pass_manager


Hyper-parameter interpretation

• α: scales single-qubit errors, default α = ϵ2/ϵ1.

• β: read-out weight inherited from α via β = α/2.

• γ: compactness bias, default γ = ϵ2/k, where k is the number of qubits in the circuit.

• δ: decoherence penalty, fixed default δ = 0.01.

Users may override any of these values when calling smart_transpile; setting a parameter to None

activates the auto-scaling rule shown above.

2.3 Patch Selection Heuristic

For k logical qubits we need a connected k-node patch of minimal total weight. The implementation
uses multi-start greedy growth:

1. Pick up to num_starts random seed edges.

2. Grow each patch by repeatedly adding the lightest neighbouring node.

3. Return the patch with the lowest aggregate weight.

2.4 Layout Integration

The selected patch becomes an InitialLayout. A single-iteration SabreLayout refines the mapping,
then the standard transpile pipeline completes routing and optimisation. Patch details and hyper-
parameters are stored in circuit metadata (smartlayout) for reproducibility.

3 Preliminary Tests and Future Benchmarking

A handful of random single-circuit experiments—executed on IBM Fake back-ends—already suggest
that smart_transpile yields slightly higher success probabilities once the problem size exceeds eight
qubits and the circuit depth becomes non-trivial.

Rigorous benchmarking, however, remains outstanding. Simulating a noisy 20-qubit circuit with
depth beyond 20 can already occupy classical resources for multiple hours; scaling this to a compre-
hensive grid of qubit counts and depths is therefore expensive but essential for a definitive performance
assessment. Securing compute time and completing that study is the main priority going forward.

4 Conclusion and Outlook

Smart Pass Manager adds noise awareness to Qiskit’s transpilation with minimal user intervention.
Future work could include:

• full benchmark grid over qubit count, depth and real hardware,

• optional local-refinement phase for patch improvement,

• modelling crosstalk and non-Markovian noise,

• extension to pulse-level optimisation.

Acknowledgments

I thank IBM [3, 4] for providing freely accessible, high-quality learning material on Qiskit and quantum
computing. Code-review and writing feedback were supplied by ChatGPT (OpenAI o3 and o4-mini-
high); all AI-generated suggestions were carefully reviewed and verified by me. This work builds on
the foundational ideas of Preskill [1] and Murali et al. [2].

2



References

[1] J. Preskill, ‘Quantum Computing in the NISQ Era and Beyond,” Quantum, 2018.

[2] P. Murali et al., ‘Noise-Adaptive Compiler Mappings for NISQ Computers,” in Proc. ASPLOS,
2019.

[3] IBM Quantum, ‘IBM Quantum Learning Portal,” 2025. https://learning.quantum.ibm.com

[4] IBM Quantum, ‘IBM Quantum Platform Documentation: Qiskit Runtime and Circuit Guides,”
2025. https://quantum.cloud.ibm.com/docs/de/guides

3

https://learning.quantum.ibm.com
https://quantum.cloud.ibm.com/docs/de/guides

	Introduction
	Design and Implementation
	Calibration Data
	Composite Edge Weight
	Patch Selection Heuristic
	Layout Integration

	Preliminary Tests and Future Benchmarking
	Conclusion and Outlook

